1.3 Properties of Graphs of Functions

A Domain and Range The domain of a function is the set of all <i>x</i> values where the function is defined. The range of a function is the set of all <i>y</i> values such that $y = f(x)$. Ex 1. Find the domain and the range for the function represented graphically to the right.	
B x-intercepts and y-intercept The x-intercepts are the x – int values such that f(x - int) = 0. The y-intercept is the y – int value such that y - int = f(0) (if it exists). Ex 2. Find the x- and the y-intercepts for the function represented graphically to the right.	
C Intervals of Increase or Decrease (Turning Points) The function increases if the slope of the tangent line is positive (the graph is going right and up). The function decreases if the slope of the tangent line is negative (the graph is going right and down). A turning point is a point where the function changes from increasing to decreasing or vice versa.	Ex 3. Find the intervals of increase/decrease and the turning points for the function given at example 2.
D Maximum and Minimum Points The point $(a, f(a))$ is a maximum point if $f(a) \ge f(x)$ in a neighborhood of $x = a$. The point $(a, f(a))$ is a minimum point if $f(a) \le f(x)$ in a neighborhood of $x = a$.	Ex 4. Find the (local) maximum and minimum points for the function given at example 2.
E Odd and Even Functions The function f is even if $f(-x) = f(x)$ (the graph is symmetric about the y-axis). The function f is odd if $f(-x) = -f(x)$ (the graph is symmetric about the origin).	Ex 5. Classify as odd or even function.

Ex 15. Graph (using a table of values or technology) and describe the properties of each function.	g) $f(x) = \sqrt{x}$ (square root function)
a) $f(x) = x$ (linear function)	
b) $f(x) = x^2$ (quadratic function)	h) $f(x) = \sqrt[3]{x}$ (cube root function)
b) $f(x) = x$ (quadratic function)	
	i) $f(x) = x^{2/3}$
c) $f(x) = x^3$ (cubic function)	
	j) $f(x) = \frac{1}{2/2}$
d) $f(x) = x^4$ (quartic function)	$x^{2/3}$
e) $f(x) = \frac{1}{x}$ (reciprocal function)	k) $f(x) = x $ (absolute value function)
	V_{1} (componential function)
$f) f(x) = \frac{1}{x^2}$	1) $f(x) = 2^{-1}$ (exponential function)
	m) $f(x) = \sin(x)$ (sine function)
Ex 16. Describe the graph of the power function	Ex 17. Describe the graph of the power function
$f(x) = x^{\alpha}$; $x > 0, \alpha \in \mathbb{R}$.	$f(x) = x^{m/n}$; $m, n \in \mathbb{Z}$.

Reading: Nelson Textbook, Pages 17-23 **Homework**: Nelson Textbook, Page 23: #4, 5, 7, 9, 11, 12, 14, 16